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Statistical mechanics of Hopfield-like neural networks with 
modified interactions 
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t L D Landau Institute for Theoretical Physics, Moscow, Kasygina 2, USSR 
$ N E Zhukovskii Central Airhydrodynamical Institute, Moscow, Zhukovskii, USSR 

Received 4 September 1990 

Abstract. Hopfield-like neural networks with modified interactions are studied by a mean- 
field theory. The modification of interactions is achieved during a special thermally noised 
iterative procedure. The resulting couplings have an intermediate form between the Hebb- 
like learning rule and the pseudo inverse one. Replica-symmetric free energy of the model 
i s  obtained. Statistical properties of the  model depend on three parameters: reduced number 
of the stared patterns m, reduced number of  iteration steps of the modification procedure 
A and the temperature I: The phase diagram in the space of these parameters is obtained. 
Thenetworkcanretrievepattemsat T=Ofora <~,(A),where o,(O)=O,14anda,(A~m)i 
1.07. As a decreases below m o ( A )  the FM retrieval states become ground states of the 
system, where o,(O) = 0.05 and m o ( A  - m) = 2/ W. 

1. Introduction 

Among recent studies of neural networks there has been an upsurge of interest in the 
problem of finding the learning algorithm which would provide maximal storage 
capacity and maximal quality of retrieval. 

Here we  consider the fully connected network consisting of N king spins [ U }  

( i  = 1,. , . , N )  and symmetric couplings A, which is supposed to store P uncorrelated 
patterns {.$‘I} ( p  = 1, , . . , P). The model is studied in the limit when both N + m and 
P+m while the parameter a = P/ N remains finite. Such system can be described by 
a Hamiltonian and it could be studied in terms of usual statistical mechanics. A classical 
example is the model introduced by Hopfield (1982) in which the interactions are 
defined according to the Hebbian rule: 

The mean-field solution (Amit et a/ 1987) shows that below the line a.(T)  ( a , ( T =  
0) =0.14 and a,(T+O)=O) the free energy has minima in which the spin states have 
non-zero macroscopic overlaps with one of the patterns. This system was shown to be 
highly robust in many respects, however the capacity ac= 0.14 for non-correlated 
patterns is obviously far from the maximum possible. The clear indication of this is 
given by the procedure of unlearning (Kleinfeld and Pendergraft (1987) and van 
Hemmen et a1 (1989)) which via special iterative redefinition of J:,s makes possible 
a notable increase of a maximal capacity. 
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The other example is the model in which the couplings are defined in an essentially 
non-local way according to the pseudo inverse learning rule (Kobenen 1984): 

where C,, is the overlap matrix: 

This model has been studied by Personaz et a1 (1985) and Kanter and Somplinsky 
(1987). The maximal storage capacity of such system storing uncorrelated patterns was 
shown to be (I== 1 (at (I > 1 the vectors 5"' cannot be linearly independent) and at 
T = 0 the overlaps with the sorted patterns in the retrieval state is equal to 1 for all 
(I < 1. However, the leaming rule (2) 'breaks the rules of the game' since the couplings 
given by (2) are not defined via a local learning procedure. 

Here we propose the model in which the couplings are defined via a local iterative 
learning procedure (section 2). I t  was noted on different occasions that introducing 
noise in the learning one can make things better (Gardner et 01 1989, Wong and 
Sherrington 1990). Here we use thermal noise during the course of training. The 
resulting couplings could be defined explicitly, and in the course'of iterations they are 
getting more and more close to those defined by the pseudo inverse learning rule (2). 

In section 3 the mean-field solution for this model is obtained and replica symmetric 
free energy is calculated. The full phase diagram ofthe system in the space of parameters 
T, (I and A (where A is the reduced number of iteration steps) is obtained in section 
4. In section 5 the effect of replica symmetry breaking is briefly discussed. Since at 
T=O the replica symmetry breaking is getting more and more strong with A and a 
increasing, the results given by the replica symmetric solution may become unreliable 
at large A. 

2. The model 

The model is formulated in the following way. We consider the system of N king 
spins [U;] ( i  = 1, .  . . , N )  which is described by the Hamiltonian: 

For a given set of P non-correlated patterns [&"'I ( w =  1,. , . , P) the couplings Jj , j  
are defined according to the following iterative procedure. The starting values of the 
couplings are defined according to the Hebbian rule (1): 

( 5 )  
1 p  

N + = I  
J .  .( = 0) J!" =- x .C!.+)(:", 

'.I 8.J 

At each iteration time step t we impose a strong magnetic field hi and define the 
quantity 
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Here ph >> 1 and h > > J ( t )  (h and J ( f )  are the characteristic values of the fields and 
couplings) so that at the zero approximation (ui)=tanh(phi). Then we define 

Finally, taking 

h, = hi, (8) 

where [, = *1 is an arbitrary fixed pattern, define a new couplings 

where s = tanh(ph). 
Using the above definitions one easily finds the iteration equation explicitly: 

Jj,j( f + 1 )  = J;,;( f )  - E  1 J:,rJx,j + o( E 2 )  (10) 
k 

where E = p cosh‘-”(ph) <c 1. 
Note, that although the iteration equation in its explicit form (10) is non-local, the 

iteration procedure itself can be formulated via local thermally noised process, (7)-(9). 
In simple terms it could be interpreted as follows. We are fixing some arbitrary 

spin state [5 , ]  and then for a given spin-spin couplings J J t )  we allow thermal 
fluctuations in a close vicinity E<< 1 near this state. After that, a new Hamiltonian 
which contains new ’renormalized’ couplings J;,j( t + 1 )  is defined according to the 
ideology of iiie renormaiitaiion-group {RC) iheory: 

Using this RG equation one can easily get the iteration equation (10). 

can be easily solved to give: 
Now we explain why one can hope that it will make things better. Equation (10) 

J , , ( t ) = C  J!,”(l+AJ‘o’)~;lT,l’ (12) 
k 

where A = E L  Using (5) one gets: 

J , . , ( t ) =  1 (!”(l+AC)L;”5:”’ (13) 
I‘” 

where the matrix C is given by (3). 
Obviously, with increasing A the structure of the couplings defined by (13) is getting 

close to that of the pseudo inverse couplings, (2). Using signal-to-noise analysis it can 
also be shown that at A small and positive, the ratio of the characteristic value of the 
signai to that of the noise, grows with A increasing. 

Such a learning rule, (13), which has an intermediate form between the Hebbian, 
(1). and the pseudo inverse, (2), ones was studied for perceptron-type networks by 
RdfrCgier and Vignolle (1989). They have shown that it provides the improvement of 
the generalization rate while preserving good learning performances. 
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3. The mean-field solution 

In this section we calculate the free energy f of our system, (4) and (13), averaged 
over the random patterns [#!.’’’I using a standard replica trick: 

Here n is the number of the replicas, ((. . .)) is the averaging over the random patterns 
and 

Introducing the fields a: and 47 one gets: 

(a:)2-fPAx(4P)2+P W P i  a~.$”’(u:+iA$:)) (16) 
P i  

(here the term, containing det(1 + AC), which contributes an irrelevant constant into 
the free energy is omitted). 

Then, following standard calculations similar to those of the Hopfield model (see 
e.g. Amit et a /  (1987)), one arrives at the following expression: 

where 

-PNnf(n, Q, R)  

= -fPNX (a”)’-faN Trlog(1 - P Q ) - f a P 2 N  I: Rp’Qp’ 
P P 1  

Here 

Rpy are the variables conjugate to (19) and ap = a ; - , ,  i.e. the pattern number one 
&‘=I)=  - & is expected to condense. 

Assuming the replica symmetry one takes: 

i f p f y  
i f p = y  

Q i f p f y  
‘ ” = ( Q  0 i f p = y  

and a p  =a.  
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Then, taking the limit n + 0 after some algebra one gets: 

where 

Here 

and 

A = 1 + Aap(Rn- R ) .  

Finally, from (22) one obtains: 

f (0 ,  Qo, Q, R, A) 

log(l-p(Q,-Q))- 

A-1 AaR 1-A logA + &pR( Qo - Q )  +x Qo + -+ -+- 

--log c o s h [ ( P / A ) ( a f + m  z ) ] .  

2A 2AA 2p 

1 

P 
- 

Here (. . .) means the averaging over 5 and Gaussian z. 
The corresponding saddle-point equations for the variables a, Qo, Q, R, and A are: 

AA 
QoA2=l+A2aR-A(A+2A)a2-- 

P 
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Note that the variable a is directly connected with the overlap 
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of the thermodynamic state with the pattern. According to (16): 

and therefore in the retrieval state 

m = (1 +h)a .  

4. The phase diagram 

4.1. Zero temperature 

At zero temperature (27)-(31) can be reduced to: 

erf( a / m )  
& + A  

a =  

ha A = l + -  
1 - c  

QoA = 1 + A2aR - A ( A  +2A)a2 -2Aa exp( -&). 
Here erf(x) is the error function: 

Introducing y = a / m  and x = l/d% and excluding Qo one obtains: 

x erf(y) 
y = a + h x  

Aa 
A = l + -  1-c 

C A = x  c -exp(-y2)-A 

A’(1 - C)2=  x 2 + h 2 a  -2An(h+2A)y2-2Aax -exp(-y2). (43) 1 
The results of the numerical solution of the above equations are shown in figure 

1. The solutions with y#O which correspond to the retrieval states exist only for 
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0 0.2 0.L 0.6 0.8 1.0 

a 

Figure 1. Zero-temperature phase diagram of the system. 

a<ac(A).  The curve a J A )  starts at the point a,(O)=0.14 which correspond to the 
usual Hopfield model, and for A + 00 asymptotically approaches the point a,(co) = 1.07. 

In the region @,(A) < a < u,(A) the retrieval states are metastable and the spin-glass 
solutions with y = 0 has lower energy. For a < a,,(h) the retrieval states are becoming 
global minima. Both rr,(A) and a,(A) are the lines of the phase transitions of the first 
order. 

The dependence of the overlaps (32), from a in the retrieval states for different 
values of A is shown in figure 2. At a = a,(A) the overlap m discontinuously jumps to 
zero. 

m 
0.2 0.4 0.6 0.8 

0.75 Ll , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 
0 

a 

Figure 1. Dependence of the overlaps in the retrieval stales from a for A = 0: 0.5: I:  2 and 
4 at T - 0 .  
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4.2. Finite temperatures 

The results of the numerical solution of (27)-(31) at T #  0 are summarized in figure 
3, where the curves of the phase transition T,(a)  are shown for several values of A. 
The solutions with y # O  exist only below the curve T, (a ) .  The dependence of the 
value of the overlaps at the critical curve T,(A) from the reduced temperature T/ T, 
is shown in figure 4. Note that this dependence exhibits a sort of scaling as A increases. 
The dependence of the value of the overlaps at the critical curve on LI for several 
values of A is shown in figure 5 .  

V S Dotsenko et a1 

0 0.2 0.4 0.6 0.8 
n 

Figure 3. Crilical temperature T,(A)  for A = 1.2 and 5. 

0 . 4 1  

0.2 
0 0.2 0.6 0.6 0.8 1.0 

T/ J, 

Figure 4. Dependence of the values of  the overlaps a1 the critical C U N e  

reduced temperature TI 7.. 
T.(A) from the 
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0 0.2 0.4 0.6 0.8 
0 

Figure 5. Dependence of the value of the overlaps at the critical curve from U far A = O ;  
1: 2 and 5. 

Critical temperature T,= 1 / ( 1  + A )  is the point of the phase transition of the second 
order and the behaviour of the curves a=( T )  and ao( T )  near T, can be found analytically. 
Expanding (27)-(31) over small a, a, R, Q, Qo and t = T,- T and introducing 

1 + A ,  
JZ 
a’ 

)’=- Jz 

T = -  

after some algebra one obtains: 

r = ( A  + A)*(fy + & R )  

y + & R  
J Z R =  

[ ( ( A +  A) ’ /A) (y+& R )  - ( ( A  +A)/A)? . ] ’  

It can be shown that the solutions of these equations with a # 0 exist only at 
T <  T,(a) where 

where ro= 1.95 and xo=0.43. 
d : h e  so!u:ion of 

(44)-(46) with a # 0 becomes equal to the SG solution with a = 0. For A not very large: 
A << I/&, one obtains simple equations: 

iuix To(n) is. defined by the c3zdihn t!x: :he free 

f ( a )  - f ( O )  =fT:a $2’- T ’ Z + ( I  +p;)r’+f+pf log z - p ,  - = 0 (48) 
2 

(49) 

( ‘3 
tz’- r 1 z 2 + z  + T’= 0 
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where 
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a' 
& z = 5 ( 1  + A ) ' -  

#=- i & 
(if A<< l/& equations (44-(46) can be reduced into one equation (49)). 

The solution of (48)-(49) gives the curve & ( a ) :  

T,(a)= T c - ~ ( ~ ) &  

where 

~ ( h )  =2.6(1-0.93A) 

for A<< 1, and 

~ ( h )  = 1 (52) 

Therefore both curves T, (a )  and T,(a) are getting up as A increases, although the 
for A > > I  ( A < <  I/&). 

interval of temperatures where the retrieval is possible is getting smaller. 

5. Discussion 

A general approach for finding limits for the maximal storage capacity in neural 

not need to know an explicit form of the learning rule. For a given set of P patterns 
&' in a system consisting of N king spins the couplings are chosen with the only 
condition that they provide stability for all patterns, i.e. the local fields hi = X j  J;,jC," 
are parallel to the patterns: c:hj> k>O in each site. It was shown that if all J: , j s  are 
independent then for uncorrelated patterns such couplings exist only for P < a ( k )  N, 
where a ( k + 0 ) = 2  (if patterns are correlated, then a ( k )  grow with the degree of 
correlations). Moreover, a simple iterative learning algorithm was proved to converge 
to those couplings in a finite number of steps (provided that such couplings exist). 

The question is to what extent the above results describe real retrieval properties 
of the networks. The doubts are in the following. 

Although above a ( k )  one cannot provide stability of the patterns in each site, it 
13 ,,U, rrrrpussrulc Llldl, m y  d l  Lll l l lc i  ICrLrpGL'lLULCJ, L 1 1 S  ryJrGrr r  "UUIU pru*rur; J'luJl'lcruLy 

retrieval with a finite percentage of errors and the phase transition to the phase with 
no retrieval at all occurs at quite a different value of a. In Cardner's approach one 
may also find a critical value of a allowing a finite percentage of errors, but the question 
is what percentage of errors is permissible? 

On the other hand, although below a ( k )  one can be sure that all the patterns are 
stable, one can only hope that at finite k > 0 the patterns have a finite basin of attraction 
(in other words, which is the critical value of k (if any), which would provide a finite 
basin of attraction?) 

The answers to the above questions have been found recently by Amit er al(1990) 
for the diluted networks with synaptic couplings taken to be optimal (at a = a ( k ) ) .  
The dynamical equations describing an evolution of the overlap of the current spin 

...-_ L -_-_--_ rl L... c..-.L...- I ~ O O O  InQnI rtr  .--:..--A *..-- :- A--- 
I L C L W U I ~ J  W' lJ pupuaru v y  U ' l ' U L I ~ ,  (I7.00, ,707,.  l l D  1L"JUL auv'lrrragr ,> L l l ' l l  U L L C  UUGiD 

:" --. :---"":L,- .t.... ^. c..:&.. .---..- "1 ..--" *Le  ̂ .."*".- ... ̂. . # A  --^..:A" "-.:"&,"-a 
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state with the given pattern has been solved numerically and the full phase diagram 
on the plane (a, T )  has been obtained. 

The maximal capacity for fully connected symmetric network is still not known, 
although there is a variant of the perceptron algorithm which allows us to find symmetric 
couplings whenever it is possible (Gardner 1988). 

Here we have considered the fully connected Hopfield-like neural network with 
symmetric couplings which have an intermediate form between the Hebb learning rule, 
( i j ,  and the pseudo inverse one, (ij. An iterative thermaiiy noised aigorithm was 
proposed which makes it possible to obtain the modified couplings explicitly. It was 
shown that it provides a substantial increase of a storage capacity and the quality of 
retrieval. 

The main results of the present study confirm a general idea that to improve the 
capacity and the functioning of a neural network one has to introduce some sort of a 
noise in the process of iearning. iniuiiiveiy it seems that the noise shakes down the 
memories and makes them adjust to each other much better. 

when the structure 
of the interaction matrix J ~ ,  (13), becomes equivalent to that of the pseudo inverse 
model, (2) (Kanter and Sompolinsky 1987), the maximum storage capacity at the zero 
temperature is equal to 1.07 and not to 1. Actually this discrepancy is a consequence 

A. The fact that the replica-symmetric solution is not stable against the replica symmetry 
breaking is clearly indicated by the zero-temperature entropy: 

A somewhat puzzling result of the present study is that as A + 

,.&-.I" P"̂ + *I,.* .La *a..,:-- " ..__^ *-:- --,... :..̂ P -I :.. .I.:" _ ^ _ ^ _  :- -- *  "...I," ^ . I ^ _ ^ ^  
U, L l l C  I',LL.L ,.,a, ,U- 1C~"L'P-"~I'.',ICL,'~ JU,YL ," l l  l""llY 111 ,,,,a pap=, 13 ,,U, DLPVlC (I, 'nLEc 

A .  , - n  I : ^  .I^ .._.. "1 "....C",A - - A - , ,  .Î  .̂.A :- _^^^. :..- I... :.- :- -.--,a 
f i t  n - - v  (I,,  LLLC "Jual " u p l r G ; r u  rrruus,, LI1S cllrr-vpy 15 Ircgdrrvc U", ,I> V d l U S  15 bl l ld , ,  

(at a = a,, S=O.OOl), which indicates that the replica-symmetry breaking in the 
retrieval states is very weak (Amit et a /  1987). However, the solutions of (40)-(43) 
show that as A (and a) increases, the value of the negative entropy, (53), also increases, 
indicating that the replica-symmetry breaking could become strong. Nevertheless, the 
replica-symmetric solution could become stable at finite temperatures. The detailed 

of the numerical simulations will be reported elsewhere. 
r t r d l i  nf +ha r ~ n l i r n . c v m m d r x r  hrp3linn i n  the mn.irlar~rl -nrlnl n C  <.,all tho mr..ltr ""-, -. ..l-.u),..-.." ,...... .,.., ... ... " --...,.-...- L..Y"I. ..-.. "- ...* Iu,,".LI 

References 

A m i t  n 1 FvrnE M .. R ~~, Hnmpr ~. .~~. .~  H ~~ m d  Wring K Y M 1990 .I. Phyv A: M a h  Fen 23 3361.81 
Amit D J ,  Cutfreund H and Sompolinsky H 1987 Ann. Phyr. 173 30 
Gardner E 1988 J. Phyx. A: Moth. Gen. 21 257 
- 1989 3. Phys. A: Morh. Gen. 22 1969 
Cardner E, Straud N and Wallace D J 1989 J. Ph.vs. A: Marh. Gen. 22 2019 
Hapfield J J 1982 h o c .  Nor1 Acod. Sci. USA 79 2554 
Kanter I and Sompolinsky H 1987 Phys. Re". A 35 380 
Kleinfeld 0 and Pendergraft D B 1987 Biophys. J. 51 47 
Kohonen T 0 1984 Self-Orgoniiolion ond Associoriue Memory (Berlin: Springer) 
Personar L, Guyon I and Dreyfus C 1985 3. Ph.wique Lex 46 L359 
RifrCgier Ph and Vignolle J-M 1989 Europhys. Lerl. 10 387 
van Hemmen J L, IoKe L 8, Kuhn R and Vass M 1989 Preprinr 
Wong K and Sherringtan D 1990 3. Phys. A: Marh. Gen. 23 4659 


